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Goals of this talk 

• Summarize and compile key constraints (nuclear, engineering, plasma physics) and inter-

dependencies that influence conceptual design of fusion power plants & pilot plants 

– Use that information to inform where innovations can make a difference 

• Provide examples of 0D “systems analysis” and conceptual design studies (as time allows) 

– Highlight some of the front-end choices and assumptions that influence results 
 

Further reading (& many figures taken from the following): 
• J. Friedberg, Phys. Plasmas 22, 070901 (2015)         tutorial style introduction 

• C. Kessel, Fusion Sci. Tech 67, 1 (2015) (and the entire January 2015 issue)    [ARIES-ACT power plant study] 

• All ARIES studies (http://aries.ucsd.edu/ARIES/)                   [Many ARIES power plant studies] 

• B. Sorbom, Fusion Engineering and Design 100, 378 (2015)                  [ARC HTS pilot plant] 

• A. Kuang, Fusion Engineering and Design 137, 221 (2018)                   [ARC HTS pilot plant] 

• J.E. Menard, Nuclear Fusion 56, 106023 (2016), Phil. Trans. R. Soc A (2019)   [Low-A HTS pilot plant] 

• M. Kovari, Fusion Engineering and Design 89, 3054 (2014)      [PROCESS systems code - physics] 

• M. Kovari, Fusion Engineering and Design 104, 9 (2016)      [PROCESS systems code - engineering] 

• H. Zohm, Nuclear Fusion 57, 086002 (2017) (+ many others)      [ITER  EU-DEMO analysis] 

• G. Federici, Nuclear Fusion 59, 066013 (2019) (+ many others)     [EU-DEMO considerations] 2 
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A non-engineered, turbulent path: From engineering, to turbulence, to fusion 

plasmas, to plasma turbulence (and maybe back to engineering … one day?) 

• “I come from Des Moines. Somebody had to.” (The Lost Continent, B. Bryson) 

• Studied electrical engineering at Milwaukee School of Engineering – I loved analog circuits (I was a 

wannabe audiophile) 

• Discovered the beauty & magic of Maxwell’s equations  definitely going to grad. school 

• But I got distracted by fluid dynamics, thermodynamics & aerodynamics 

• Studied turbulent flames using laser induced fluorescence (Purdue University)  intro to turbulence 

• Turbulent flames are fascinating, but I missed my Maxwell’s Equations  Plasma! 

• Did my Ph.D. at the University of Wisconsin – Madison on HSX stellarator (see Bader talk, Day 4) 

• Realized turbulence was an important research topic in magnetized fusion plasmas  HOOKED! 

• Post-docs at U. Warwick (UK) & PPPL  spherical tokamak research (MAST, NSTX) 

• I spend a lot of time babysitting supercomputer simulations solving nonlinear 5D gyrokinetic-Maxwell 

equations, analyzing data, and comparing the two to validate predictions, develop transport models 

• But … sometimes I miss engineering “realities” (I suppose this is how I got myself roped into giving 

this talk … Arturo!) 3 



Schematic of a fusion power plant 

• Fusion core 
(magnets, plasma) 

• Blanket (neutron 
capture, tritium 
breeding) 

• Divertor/PFCs 

• Heating & current 
drive 

• Tritium processing 
and fueling 

• Power conversion 

• Maintenance 
scheme and waste 

4 



Conceptual design studies make front-end decisions and 

assumptions, then optimize remaining inter-dependencies 

• Define mission deliverables like Pe,net, availability, cost metrics, e.g. 

– Nth-of-a-kind power plant with competitive COE 

– Demonstration reactor (DEMO), validate all systems expected for power plant 

– Pilot plant that produces net electricity, establishes capability for high average 
power output, demonstrates safe production and handling of tritium as well as 
feasibility of a closed fuel cycle (2019/2020 Community Planning Process Report) 

• Choose a core architecture (steady-state tokamak, pulsed tokamak, stellarator, 
inertial fusion, …),  

• Other elements might be assumed up front (blanket materials, heating 
scheme, …), ideally perform “trade” study to quantify impact 

 

• Methodology: Start with 0D “systems studies” (today’s talk), validate 
design points with higher fidelity analysis, iterate 

5 



Power plant vs. pilot plant considerations 

• A number of essential criteria for attractive power plants have been identified [El-Guebaly] 

– Economically competitive cost-of electricity (COE); load-following capacity and range of unit sizes; 

High system availability; Tritium self-sufficiency with closed fuel cycle; Radiation-resistant materials for 

long lifetime; RAMI (Reliability, availability, maintainability, inspectability); Easy to license; Intrinsic 

safety; Integral radioactive waste management and decommissioning plan 

• Many international partners are pursuing “DEMO” reactors to demonstrate many of the above 

– Using most mature (least risky) technologies and physics assumptions generally leads to very large 

power plants (R~9 m tokamaks, up to R~20 m stellarators) 

• Recent US vision* to pursue as a mission a pilot plant at low capital cost, perceived to be 

more attractive to development within the US energy market 

– Emphasis on raising “Technical Readiness” of low-maturity innovations to lower capital cost 

• Recent call by DOE for NAS to perform a “fast-track” U.S. Compact Pilot Plant study to: (1) 

identify key goals for pilot plant; (2) list principle innovations needed for private sector to 

address, perhaps in concert with DOE efforts 

6 *NAS Burning Plasma report (2018), APS-DPP Community Planning Process report 2019/2020 
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Simple block diagram of plant power balance 

 

Fusion power plant 
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Precirculating 

Pgross elec. 

Qeng=Pnet electric/Precirculating 

Pnet electric 



Simple block diagram of plant power balance 

 

Fusion 
core 

plasma 

Pheat,ext 

Pfusion + 
Pheat,ext 

Qp=Pfusion/Pheat,external Precirculating 

Pgross elec. 

Qeng=Pnet electric/Precirculating 

Plasma 
heating, 

coils / cryo, 
pumps, T 

processing, 
plant, … 

thermal 
conversion 

(energy 
storage?) 

inefficiencies 

Pnet electric 

8 



More detailed block diagram of plant power balance 

9 



More detailed block diagram of plant power balance 
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Paux 

Paux/haux 

haux 

hth 

Pn 

Pa+Paux 

Pnet 

Precirc 𝐏𝐧𝐞𝐭 = 𝐏𝐠𝐫𝐨𝐬𝐬 − 𝐏𝐫𝐞𝐜𝐢𝐫𝐜 

𝐐𝐞𝐧𝐠 =
𝐏𝐠𝐫𝐨𝐬𝐬

𝐏𝐫𝐞𝐜𝐢𝐫𝐜
 

Pgross 

Ppump 

Pplant 



Electricity output & gain depend on fusion power & gain, 

thermal efficiency, and external heating efficiency 

11 

Pgross = ηth ⋅ MnPn + Pα + Paux  

𝐏𝐠𝐫𝐨𝐬𝐬 = 𝛈𝐭𝐡 ⋅ 𝐐𝐩 ⋅ 𝐏𝐚𝐮𝐱 ⋅  𝟎. 𝟖𝐌𝐧 + 𝟎. 𝟐 + 𝟏/𝐐𝐩  

 
 

Precirc =
Paux
ηaux
+ Pcoils + Psub + Pcontrol  + Ppump 

𝐏𝐫𝐞𝐜𝐢𝐫𝐜 =
𝐏𝐚𝐮𝐱
𝛈𝐚𝐮𝐱
𝟏 + 𝛈𝐚𝐮𝐱

𝐏𝐜𝐨𝐢𝐥𝐬
𝐏𝐚𝐮𝐱
+ 𝛈𝐚𝐮𝐱𝐐𝐩

𝐏𝐬𝐮𝐛 + 𝐏𝐜𝐨𝐧𝐭𝐫𝐨𝐥  + 𝐏𝐩𝐮𝐦𝐩

𝐏𝐟𝐮𝐬
 

Mn 1.1, neutron 

energy multiplier 



Electricity output & gain depend on fusion power & gain, 

thermal efficiency, and external heating efficiency 

• Assuming SC coils (Pcoils0), (Psub+Pcon+Ppump)/Pfus=0.07, Mn=1.1 

12 

𝐐𝐞𝐧𝐠 = 𝛈𝐭𝐡 ⋅ 𝐐𝐩 ⋅ 𝛈𝐚𝐮𝐱 ⋅  
𝟎. 𝟖𝐌𝐧 + 𝟎. 𝟐 + 𝟏/𝐐𝐩 

𝟏 + 𝟎. 𝟎𝟕𝛈𝐚𝐮𝐱𝐐𝐩
 

 

Pnet  = Pfus ⋅ ηth ⋅ 0.8Mn + 0.2 + 1/Qp − 0.07  −
Paux
ηaux

 

 

𝐏𝐧𝐞𝐭 ≈ 𝐏𝐟𝐮𝐬 ⋅ 𝛈𝐭𝐡 ⋅ 𝟎. 𝟗𝟒 −
𝐏𝐚𝐮𝐱
𝛈𝐚𝐮𝐱

 



Cost-of-electricity (COE) and capital cost are also of great 

interest 

• Not considering cost metrics here (quantitatively) 

 

• There have been multiple attempts to quantify Nth-of-a-kind power plant 
COE, depending on: 

– Capital cost (generally expect $$$ ~ volume or mass) + “learning curve” 

– Construction, licensing and operating costs 

– Availability 

– Waste disposal 

– Contingency 

 

• Capital cost & development costs driven by risks & unknowns, complexity, 
engineering, design, prototyping  hard to quantify 

13 



Remainder of this talk: assemble expressions, relations 

and constraints for Pfusion, Paux, Qp, hth, haux, … 

• Geometry and size 

• Nuclear physics 

• Engineering 

• Plasma physics 

 

• I’ll focus on tokamak, but can do similar for others (stellarators, RFPs, 

FRCs, MCF, ICF, …)  good homework problem for you! (and me) 

 

 

14 

Highlight interactions in 0D systems 

analysis that influence design points 



Some geometry definitions 
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ITF 

Major radius: 𝐑𝟎  
Minor radius: 𝐚 

Aspect ratio: 𝐀 =
𝐑𝟎

𝐚
  

Inverse aspect ratio:  𝛜 =
𝟏

𝐀
=
𝐚

𝐑
𝟎

 

Plasma elongation: k 

Blanket thickness: 𝐛 
Coil thickness: 𝐜 
 

Plasma volume: 𝑽 = 𝟐𝝅𝑹𝟎𝝅𝒂
𝟐𝜿  

Plasma surface area: S≈ 𝟐𝛑𝑹𝟎 ⋅ 𝟐𝛑𝐚 (𝟏 + 𝜿
𝟐/𝟐)

𝟏/𝟐
 



Fusion power depends on pressure and volume 

16 

Pfus = nDnT σv ℰDT ⋅ V 
 

Pfus ~ nT
2V ~ p2 ⋅ Ra2κ 

 
𝐏𝐟𝐮𝐬~𝛃

𝟐𝐁𝟒𝐑𝐚𝟐𝛋 
 

𝐏𝐟𝐮𝐬~𝛃
𝟐𝐁𝟒𝐑𝟑𝛜𝟐𝛋 

Cowley, Day 1 Only highlighting 0D relations, 

can also accommodate n, T 

profile shapes if desired 



Fusion gain depends on the “triple product” nTtE (power 

balance) 

Fusion plasma gain 

Energy confinement time: 

Q =
Pfusion
Pheat,external

 

Q~ nT ⋅
nTV

Ploss
 

 

𝐐 ~ 𝐧𝐓𝛕𝐄 ~ 𝐩 ⋅ 𝛕𝐄  

τE =
stored energy

rate of energy loss
~
nTV

Ploss
  

17 

From power balance: 

Ploss = P𝛼 + Pheat,ext  

𝐧𝐓𝛕𝐄 ~
𝐐

𝐐 + 𝟓
 

 

Should also solve particle 

balance ( dilution of fuel): 

𝑵𝑫,𝑻 = 𝑵𝒆 − 𝟐𝑵𝑯𝒆 − 𝒁𝒊𝒎𝒑𝒏𝒊𝒎𝒑
𝒊𝒎𝒑

 

𝒅𝑵𝑯𝒆
𝒅𝒕
=
𝑷𝜶
𝑬𝜶
−
𝑵𝑯𝒆
𝝉𝑯𝒆

 

Cowley, Day 1 



Achievable fusion gain tied to global plasma stability 

limits, engineering limits and energy confinement time 

• b = p / (B2/2m0) limited by global MHD 

stability 

• Magnetic field, B, determined by 

superconductor technology, mechanical 

stress & strain limits, and blanket & 

shield thickness 

• Energy confinement time, tE, dominated 

by turbulent losses, some room for 

manipulation (flow shear, plasma shape) 

𝐐 ~ 𝐧𝐓𝛕𝐄 ~ 𝛃 ⋅ 𝐁
𝟐 ⋅ 𝛕𝐄 

18 

For fixed geometry assumptions and 

physics constraints, fusion gain and power 

set largely by ~ (R0,B0) 

Sorbom, Day 5 



Energy confinement time characterized by various 

empirical or semi-empirical scalings 

• Empirical confinement scalings inferred from multi-machine database, e.g. 

1998 ITER Physics Basis H-mode scaling (IPB98) 

𝛕𝐄,𝐈𝐏𝐁𝟗𝟖 = 𝟎. 𝟎𝟓𝟔𝟐 ⋅ 𝐈𝐩
𝟎.𝟗𝟑 𝐁𝐓

𝟎.𝟏𝟓 𝐧𝟎.𝟒𝟏 𝐏𝐥𝐨𝐬𝐬
−𝟎.𝟔𝟗 𝐑𝟏.𝟗𝟕 𝛜𝟎.𝟓𝟖 𝛋𝟎.𝟕𝟖 𝑨𝟎.𝟏𝟗 

– Scaling trends supported by theory and modeling 

 

• Other forms exist, depending on machine & plasma state (L-mode, H-

mode, I-mode, QH-mode, …), e.g. NSTX H-modes 

𝛕𝐄,𝐍𝐒𝐓𝐗𝟎𝟔 = 𝟎. 𝟎𝟗𝟓 ⋅ 𝐈𝐩
𝟎.𝟓𝟕 𝐁𝐓

𝟏.𝟎𝟖 𝐧𝟎.𝟒𝟒 𝐏𝐥𝐨𝐬𝐬
−𝟎.𝟕𝟑 𝐑𝟏.𝟗𝟕 𝛜𝟎.𝟓𝟖 𝛋𝟎.𝟕𝟖 𝑨𝟎.𝟏𝟗 

 

• "H98” factor (e.g. H98=tE,NSTX/tE,IPB) to quantify what we don’t understand 

well enough (at least to predict quantitatively) … but we’re working on it 
19 



Nature of turbulent losses can vary with machine geometry and 

operating regimes  opportunities for improved performance 

20 

Heat 

loss 

Gyrokinetic simulation of 
plasma turbulence in NSTX 

(this is mostly what I do        ) 

Visualization: F. Scotti 



Global stability (MHD, others) provides a number of 

constraints 

• Normalized beta limit: bN = b / (IP/aB) < bN,limit ~ 2-6 (function of R/a, k, 

proximity to conducting walls)  

– To avoid disruptions or otherwise deleterious effects  
 

• Safety factor limit: q* ~ aBtor/RBpol ~ a2Btor/RIp(1+k2) > 2.5 

– To avoid “kink” modes (plasma current is limited for a given toroidal field 

strength) 
 

• Elongation limit: klimit ~ 1.7-2.5 (function of R/a, plasma inductance) 

– To avoid vertical instability 
 

• Empirical density limit (“Greenwald limit”): n < nGW= Ip / pa2 (fGW<1) 

– To avoid disruptions 21 

Battaglia, Day 4 



Steady-state tokamaks require 100% non-inductive 

current 

• Inductive current drive from central solenoid is limited 

• Externally driven current (from heating sources) must make up the 
difference 

 

 

 

 

• Luckily, pressure gradient in tokamaks leads to self-generated “bootstrap 
current” (due to B, curvature drifts + p + collisions) 

22 

𝐟𝐁𝐒  =  
𝐈𝐁𝐒
𝐈𝐩
 ~ 𝝐 ⋅ 𝛃𝐩𝐨𝐥 ~ 𝝐 

𝐩𝐚𝟐

𝐈𝐩
𝟐
𝟏 + 𝛋𝟐 ~

𝜷𝑵𝒒∗

𝝐
𝟏 + 𝛋𝟐  

𝐈𝐁𝐒 + 𝐈𝐂𝐃 + 𝐈𝐎𝐇 = 𝐈𝐏   𝐨𝐫    𝐟𝐁𝐒 + 𝐟𝐂𝐃 + 𝐟𝐎𝐇 = 𝟏 
0 (ideally) 0 (ideally) 

Battaglia 
Day 4 



Auxiliary heating required to access high temperatures 

and to drive current 

• External heating required to access burning plasma conditions (T~14 keV) 

• Can also drive current for long-pulse or steady-state tokamak 

 

 

 

• Each approach has different efficiencies (hCD in units of 1020 MA/MW-m2) and 
trade-offs 

– NBI (hCD0.35); well-established, needs vessel openings, impacts tritium breeding 
ratio (TBR), line-of-sight to neutrons; large, high voltage sources (0.5-1 MeV) 

– LHCD (hCD0.45); sources available, needs internal antenna, direct exposure to 
plasma and neutrons 

– ECRH (hCD0.25); very precise, has density cutoffs (motivates gyrotron 
developments 200-300 GHz) 
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Pinsker, Day 5 

𝐈𝐂𝐃 = 𝛈𝐂𝐃
𝐏𝐂𝐃
𝐧𝐞𝐑
⋅ 𝑭 𝐓𝐞, 𝐙𝐞𝐟𝐟,⋅⋅⋅  𝛈𝐚𝐮𝐱 ≈ 𝟎. 𝟑 − 𝟎. 𝟒 



Steady-state current in a tokamak provides a very 

challenging constraint 

• High bootstrap fraction (depending on stability limits), current drive 

efficiency, and confinement quality (tE, at Ip as low as possible) all needed 
24 

fBS + fCD = 1 
 

A1
βNq∗

ϵ
1 + κ2 + A2

ηCDPCD
IpneR

= 1 

 

𝐀𝟏
𝛃𝐍𝐪∗

𝛜
𝟏 + 𝛋𝟐 + 𝐀𝟐

𝛈𝐂𝐃𝐏𝐂𝐃𝐚
𝟐

𝐟𝐆𝐖𝐈𝐩
𝟐𝐑
= 𝟏 

fGW ~ constant < 1 (n~IP/a2) 



Divertor and first wall material limits constrain exhaust 

power & particle handling 

• Must dissipate heat fluxes (steady state, transient) crossing 
from closed surfaces to open field lines to satisfy material 
limits 

– Solid PFCs, q,solid PFC  5-10 MW/m2 

– Liquid metal PFCs (Li, Sn, SnLi), q,LM PFC  50 MW/m2 

– Vapor shielded PFCs, q,vapor PFC   (???) MW/m2 

 

• 0D studies often simply evaluate a scrape-off-layer (SOL) 
heat flux metric to represent the “heat exhaust challenge” 

 

 

• Recent analysis has clarified scaling of impurity seeding 
(fimp) required to radiatively dissipate (Prad,imp) large Q|| 
(“detachment”) 

– Reinke [2017], Goldston [2017] 
25 Donovan, Lasa, Allain - Day 5 



Radial build depends on TF coils, blanket, minor radius 

and central solenoid 

• Magnetic field in plasma determined by magnet technology & engineering 

limits, blanket thickness, and aspect ratio 

26 

B R =
μ0ITF
2πR
=
B0R0
R

 

 
B0R0 = BTFRTF 
 
RTF = R0 − a − b = R0 1 − ϵ − ϵb  
 
𝐁𝟎 = 𝐁𝐓𝐅(𝟏 − 𝛜 − 𝛜𝐛) 

ITF 

Aspect ratio: 𝐀 =
𝐑𝟎

𝐚
  

Inverse aspect ratio:  𝛜 =
𝟏

𝐀
=
𝐚

𝐑𝟎
 

Plasma elongation: k 

Normalized blanket thickness:  𝛜𝐛 =
𝐛

𝐑𝟎
 

Will also need central solenoid for 
inductively driven current ramp-up 



Breeder-blanket thickness requirement largely determined 

by neutron absorption issues 

• Breeder-blanket required for neutron multiplication (w/ Be, Pb), neutron 
moderation / slowing down, tritium breeding (w/ Li), shielding (e.g. magnets) 

• Blanket thickness, b ~ 1 m to satisfy slowing down, breeding & shielding 
requirements 

– Must be validated by neutronics with sufficiently detailed geometry & materials 

 

• Device size (R,a,b) and power density also determines neutron wall loading, 

Wn = Pneutrons/Swall, 𝐒𝐰𝐚𝐥𝐥 ≈ 𝟐𝛑𝐑𝟎 ⋅ 𝟐𝛑𝐚 (𝟏 + 𝛋
𝟐/𝟐)

𝟏/𝟐
 

– Higher Wn enables more compact configuration, but reduces component lifetime 
which impacts availability (COE) 

• Wn~1-4 MW/m2  

27 

Garrison, Day 7 

Kessel, Day 6 



Thermal efficiency depends on achievable temperatures 

in blanket coolant and thermodynamic cycle 

• A number of blanket concepts proposed with different materials & coolants, 

affects achievable temperatures and thermal conversion efficiencies 

– Sub-critical water cooled (Tout~350 °C), hth~0.3 (Rankine / steam cycle) 

– Super-critical CO2 (Tout~500 °C), hth~0.36-0.45 (Brayton / gas cycle) 

– DCLL, He cooled (Tout~650 °C), hth~0.45 (Brayton / gas cycle) 

– SCLL, He cooled (Tout~1000 °C), hth~0.58  (Brayton / gas cycle) 

 

• Above, along with other functional aspects, validated by more sophisticated 

modeling (neutronics for shielding, TBR; MHD for pump power; etc.) - If I 

ever switched research areas, I’d probably analyze fusion breeder-

blankets! 
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Coil sizing & achievable B0 field depend on required structural 

material to support JB forces + winding pack to support current 

• Need structural support to manage JB forces 

– Vertical TF force 

– Centering TF force 

– Out-of-plane TF bending force (from interaction 
with PF coils) 

– Central solenoid bursting force 

• Need sufficient winding pack area to support 
field, BTF ~ ITF = JWPAWP 29 

Coil forces TF coil cross section (inboard side) 

P. Titus 



Width of supporting coil structure determined by material 

stress limits, can limit BTF (B0) 

• TF vertical force (FZ~B0
2R0

2) balanced by tensile force 
(2FT = 2sTAT) 

• TF centering force (FR~B0
2R0) balanced by compression 

from vaulting / wedging (FC=2sCAC) 

– Can also “buck” on central solenoid or bucking cylinder (JET) 

 

• Coil structure thickness (cM) constrained by total stress 
limit (e.g. Tresca stress sT+sC  smax~660 MPa for steels) 

• Must also consider strain limits, s=Eyounge 

– E.g. e<0.3-0.45% for HTS, (Sorbom, Day 5) 

 

• More detailed models include discrete number of TF coils 
(TF ripple from non-axisymmetry), # of WP turns, 
structural breakdown of WP layers, … 
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force 



Width of winding pack depends on achievable current 

density, can limit BTF (B0) 

• BTF =
μ0ITF

2πRTF
 

• ITF = JWP ⋅ AWP 

• AWP = π R0 − a − b
2 − R0 − a − b − cWP

2  

 

Constrained by: 

• BTF,max < 12-20 T 

• JWP,crit < 12-100+ MA/m2  

depending on LTS / HTS technology & 
configuration 
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𝐵𝑐𝑟𝑖𝑡 = Bc,0 ⋅ 𝐹 𝐽/𝐽𝑐𝑟𝑖𝑡, 𝑇/𝑇𝑐𝑟𝑖𝑡  
𝐽𝑐𝑟𝑖𝑡 = Jc,0 ⋅ 𝐹 𝐵/𝐵𝑐𝑟𝑖𝑡, 𝑇/𝑇𝑐𝑟𝑖𝑡  

𝑇𝑐𝑟𝑖𝑡 = Tc,0 ⋅ 𝐹 𝐵/𝐵𝑐𝑟𝑖𝑡, 𝐽/𝐽𝑐𝑟𝑖𝑡  

Sorbom 
Day 5 

TF coil cross section (inboard side) 

BTF @ RTF=R0-a-b 

cWP 



Let’s put it all together to identify integrated self-

consistent solutions 

• Choose targets and constraints 

• Solve remaining equations 

• Test sensitivity of solution to parameter variations 

 

• First consider power plant (Pe,net=1000 MWe) 

• Then pilot plant (Pe,net ~ 100-200 MWe) 
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Power plant example: Pe,net=1000 MWe , steady-state using well-

established (~conservative) physics limits [Freidberg tutorial] 

• Choose a target power: PE=1,000 MWe, frecirc0.15 (fCD=0.1, haux=0.4 Paux), hth=0.4, 
Tplasma=14 keV 

• Choose geometry: R/a=4, k=1.7, Wn~Pa/Area = 4 MW/m2 

• Solve for: R, a, pressure, density 
 

• Choose blanket thickness: bblanket=1.2 m (n-moderation, T-breeding) 

• Choose coil technology: Nb3Sn coil model (BTF,crit=13 T, JWP,crit=20 MA/m2, smax=600 
MPa) 

• Solve for: coil thickness & B0 (from radial build) 
 

• Solve for: confinement time and required current (PlossPa  tE  IP) 

• Solve for: externally driven current (assumed LHCD, hCD  0.43 MA/MWm2) 
 

• Evaluate stability and criteria: 
– (1) beta limit (bN<2.8) 

– (2) kink limit (q*>2) 

– (3) greenwald density limit (n/nGW<1) 

– (4) 100% non-inductive (fBS+fCD=1) 33 



Not possible to satisfy 100% non-inductive or kink 

stability limit due to large required current 

• Base assumptions (H98=1) require large Ip=14 
MA to achieve necessary Q~tE 

τE,IPB98 ~H98 ⋅ Ip
0.93 

 

• Insufficient bootstrap current and external 
current drive for 100% non-inductive 

𝐴1
𝛽𝑁𝑞∗

𝜖
1 + κ2 + 𝐴2

ηCDPCD

𝐼𝑝neR
= 1 

 

• Also fails to meet kink stability due to large Ip 

 q* ~ a2Btor/RIp(1+k2) 

34 

Base case: a=1.34 m, R=5.34 m 

good 

bad 



Enhanced confinement enables 100% non-inductive 

scenario 

• Enforce 100% non-inductive constraint and vary 
confinement enhancement (H98) 

𝛕𝐄,𝐈𝐏𝐁𝟗𝟖 ~𝐇𝟗𝟖 ⋅ 𝐈𝐩
𝟎.𝟗𝟑 

 

• Can achieves sufficient confinement (tE) at lower 
Ip  enables 100% non-inductive & avoids kink 
instability 

 

• Still violates beta limit  if we can 
simultaneously operate at higher beta and 
confinement, we have a solution 

– Higher bpol gives higher fBS~q*bN/e1/2 

• Achieving high bN and H at low-disruptivity are 
major research priorities DIII-D (beta limited) and 
NSTX-U (confinement limited) 
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Higher capacity enables 100% non-inductive, eventually 

satisfying all stability constraints at very large scale 

• Favorable for COE, but not for capital 

cost 
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Higher field on-axis satisfies all constraints 

• More aggressive technology (e.g HTS, 
Sorbom, Day 5) relaxes most plasma 
physics challenges 

– Avoids b and q* kink limit 

 

• Higher power density & wall loading 

• Exacerbates boundary heat flux 
mitigation challenge, Q|| = PB/R 

– But radiative detachment solution for 
plasma exhaust also scales with B 
[Reinke, 2017] 
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ARIES-ACT study performed trade study in assumed 

physics and technology limits 

• “ACT”: Advanced and Conservative 
Tokamak power plant study 

– 1000 MWe 

– 100% non-inductive 

– PbLi breeder 

– Nb3Sn 

– A=4, k=2.2 
 

• ACT1:  More aggressive physics and 
technology 

– Much smaller (1000 MWe at size of 
ITER) 

– Requires elevated confinement 
(H98=1.65) and good stability (bN=4.75) 

 

• ACT2: Conservative physics and 
technology 

– Larger ~ EU-DEMO, higher Ip and Paux, 
lower fBS 

38 Kessel et al. (2015) 



More recent focus to target pilot plant parameters 

• Lower capacity, Pnet~100-200 MWe (COE not the immediate concern) 

– Don’t need to demonstrate 100% of all “essential criteria”, as long as solutions 

perceived to scale 

 

• Target aggressive technology and physics to push for pilot plant at low 

capital cost (e.g. compact tokamaks, stellarators) 
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High field HTS magnets enables smaller, net electric pilot 

plants (ARC design) 

• Targeting fixed fusion power: Pfusion = 500 
MW 

• HTS coil properties: Bmax=18 T 

• Shielding: Db=0.5 m (<1 m blankets) 

• Constraints: Pfusion = 500 MW, QP>25, 
q*>2.2, bN=<3, RF heating cutoff, Wn>2.5 
MW/m2 

 

• Enforcing 100% non-inductive  Pnet=190 
MW, fBS=0.63 

– Still requires elevated confinement (H98~1.8) 
for steady-state 
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Lower aspect ratio provides opportunities to achieve 

improved plasma performance 

Re-write fusion power & gain in terms of 

BTF, R0, e and bN, k stability parameters 
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Pfus ~ BTF
4R0

3  e3(1-e-b/R0)4  bN
4k4  (CBS/fBS)

2 

(Petty 08 tE scaling) 

Lower A=R/a=1/e can access larger 

stable bN and k 



Pnet maximized at lower A~2-2.4 if coil current density 

(JWP) high enough and shielding not too thick  

• Required confinement enhancement H98 is still large 

• Minimal confinement enhancement if NSTX 
confinement scaling remains  key NSTX-U 
research priority  
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Achievable BTF,max eventually drops with aspect ratio; 

progressively less central solenoid flux available for ramp-up  
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Attempts to self-consistently include divertor / plasma 

heat exhaust solution have recently been made 

• Additional constraints on required impurity 

seeding for radiative divertor (detachment) 

provide upper bound on (R0,B0) 

– Plus synchrotron radiation increases at higher 

B field 
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𝐏𝛂 + 𝐏𝐚𝐮𝐱 = 𝐏𝐥𝐨𝐬𝐬,𝐜𝐨𝐧𝐝𝐮𝐜𝐭𝐢𝐨𝐧 + 𝐏𝐫𝐚𝐝,𝐁𝐫𝐞𝐡𝐦 + 𝐏𝐫𝐚𝐝,𝐬𝐲𝐧𝐜 + 𝐏𝐫𝐚𝐝,𝐢𝐦𝐩 

Siccinio, Nucl. Fusion 58, 016032 (2018) 



Stellarators offer path to steady-state Pnet>0, Qeng>1 at 

lower Precirc & Pfusion 

• Intrinsically steady-state, don’t need to sustain internal 
plasma current, Paux can be smaller  much lower 

recirculating power: 𝐏𝐧𝐞𝐭 ≈ 𝐏𝐟𝐮𝐬 ⋅ 𝛈𝐭𝐡 ⋅ 𝟎. 𝟗𝟒 −
𝐏𝐚𝐮𝐱

𝛈𝐚𝐮𝐱
 

– Avoids current-driven “disruptions”  eases control 
needs, alleviates some availability/risk concerns 

– Different global MHD stability characteristics  can 
operate at higher density, potentially relaxing some 
plasma facing component (PFC) constraints 

 

• 3D shape adds complexity to coils, blanket, plumbing, 
but also provides freedom for optimization  critical 
research area 

• Modular coils can be constructed and shipped; biggest 
tokamak PF coils must be wound on-site (e.g. ITER 
PF coil building) 
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Summary 

• Conceptual power/pilot plant design studies must consider self-consistent 

integrated solution including nuclear, engineering and plasma physics 

constraints 

– Neutron absorption, blanket concepts, superconductor technology, current drive 

efficiencies, confinement, stability limits, … 

 

• Studies have been performed highlighting key sensitivities that influence 

performance  motivates critical, innovative research in US & 

worldwide fusion programs 
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Tokamak plasmas exhibit a few different operating 

regimes 

• L-mode (“low” confinement mode) 

• H-mode (“high” confinement mode): with sufficient 
power passing through the edge, an edge transport 
barrier spontaneously develops  considerably 
improved confinement 

– There are others (QH-mode, I-mode, VH-mode, EP-H 
mode, …) 

 

• Access to H-mode depends on a “L-H threshold 
power”, PL/H~0.049B0.80n0.72S0.94 

• Power crossing the last closed flux surface (Psep = 
Pconduction,loss – Prad) must be bigger then PL/H to remain 
in H-mode: Psep > PL/H 
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Inductive current drive (for ramp-up and “flat top” in 

tokamaks) requires a central solenoid (CS) 

• Can estimate how much central solenoid flux DCS (V-s) required to 
ramp-up plasma current (prior to 100% non-inductive flat-top): 

– Resistivity: Dres ~ m0IpR0 

– Self-inductance: Dind ~ LPIp 

 

• Motivates research on non-inductive plasma break-down and current 
ramp-up schemes (Diem, Day 2; Battaglia, Day 4) 
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∂

∂t
 B ⋅ dS = − ∇ × E ⋅ dS = − E ⋅ dl 

∂

∂t
ΦCS = −Vloop 

𝚫𝚽𝐂𝐒 = 𝚫𝚽𝐫𝐞𝐬 + 𝚫𝚽𝐢𝐧𝐝 

𝚫𝚽𝐂𝐒~𝐈𝐩 



Shrinking aspect ratio ultimately constrained by stress 

limits, current density limits, central solenoid requirements 

49 C. Perks, SULI 2018 project 


